Drug Discovery Technology (1/3) (Revised August 7, 2025) | PROTACs, molecular glue | Efficient evaluation method for degraders Technologies that can comprehensively analyze on-target and off-target Technology to discover targets for degradative drivers (excludes cancer and tumors) Technology to reach the target tissue (such as CNS) | |---|---| | Small Molecules Targeting RNA | Method for measuring the binding affinity of RNA-targeting small molecules with in vivo relevance Excludes SPR, ITC, MST, AS-MS and SHAPE High through put in silico screening technology for RNA Efficient method for evaluating the three-dimensional structure of RNA | | Drug discovery method aimed at covalent binders | Fundamental technologies Evaluation methods for drug discovery | | Screening and Synthesis Automation Technologies | Virtual screening methods that can screen a large-scale virtual library with high accuracy and speed Operate throughout the day | ## Drug Discovery Technology (2/3) (Revised August 7, 2025) | Peptide Therapeutics | Identification of intracellular PPI targets Efficient method for transferring peptide drug molecules into cells Technology for highly accurate docking (SBDD) and simulation (LBDD) of peptide drug molecules | |------------------------------|--| | Antibody Therapeutics | Technology to deliver antibodies into brain Discovery of novel target molecules for antibody drug development Chronic infectious diseases Central nervous system diseases Motor dysfunction diseases | | Nucleic Acid
Therapeutics | Neurodegenerative diseases and motor dysfunction diseases for siRNA therapeutics Deliver siRNA into the brain and immune cells | ## Drug Discovery Technology (3/3) (Revised August 7, 2025) | Pharmacokinetics | In vitro assay for predicting human biliary clearance and enterohepatic circulation Drug transport and drug-drug interaction (DDI) risk prediction models using human P-gp/BCRP transgenic or knock-in animals Intracellular drug quantification for PK/PD and MoA insights Predict the risk of P-gp or BCRP inhibitory effects on drug absorption and disposition | |---|---| | Safety | AI system to classify biochemical toxicity data as adverse or non-adverse In silico toxicity mechanism analysis system Predicting toxicity target organs using live animal image diagnosis (CT, MRI, etc.) In vitro model for ocular toxicity evaluation and mechanism analysis In vitro evaluation system to evaluate damage and regeneration of inner ear hair cells In vivo evaluation system for ototoxicity using ABR (Auditory Brainstem Response) Ames avoidance measures and prediction tools in nucleic acid analog drug discovery | | Drug Discovery Platforn
Technologies | Method for screening and optimizing enzyme activity based on substrate specificity of metabolite biosynthetic enzymes Bioinformatics techniques including enzyme sequence data Data-driven optimization for reproducible scale-up cultivation |