創藥技術 (1/3)

(2025/11/12版)

RNA標的低分子	● 生体関連RNAを標的とする低分子の結合親和性を測定する方法(SPR、ITC MST、AS-MS、SHAPEを除く)● RNA標的に対する低分子化合物のハイスループットインシリコスクリーニング技術● RNAの三次元構造を評価するための効率的な方法
共有結合型バインダーを対象とした創薬	● 基盤技術● 創薬における評価方法
ケモインフォマティクス	 ● 高い精度と速度で大規模なバーチャルライブラリをスクリーニングできる仮想スクリーニン 手法 ● ペプチド医薬の高精度なドッキング(SBDD)およびシミュレーション(LBDD)のための技術

創藥技術 (2/3)

(2025/11/12版)

ペプチド医薬	● ペプチド創薬に適した標的の同定 (タンパク質間相互作用などの低分子では攻略できない高難度標的)
	● ペプチド医薬品の製造費を低減させるための合成技術
抗体医薬	 ペプチド医薬を効率的に経口や経鼻吸収させるための製剤技術 (可溶化製剤など) 抗体を脳内に送達するための技術 抗体医薬品創薬に向けた新規標的分子の探索 慢性感染症
	- ほに思え近 - 中枢神経系疾患 - 運動機能障害疾患 ● siRNA医薬品創薬に向けた新規標的分子の探索
核酸医薬	- 神経変性疾患 - 運動機能障害疾患 • siRNAを脳および免疫細胞に送達する技術

創藥技術 (3/3)

(2025/8/7版)

薬物動態	 ● ヒト胆汁クリアランスおよび腸肝循環を予測するためのin vitroアッセイ ● ヒトP-gp/BCRPトランスジェニックまたはノックイン動物を用いた薬物輸送・相互作用(DDI)リスク予測モデル ● 薬剤の細胞内定量による薬物動態(PK)/薬力学(PD)および作用機序(MoA)の解明 ● 薬物吸収および分布に対するP-gpまたはBCRP阻害効果のリスク予測
安全性	 ● 生化学的毒性データを有害か非有害かに分類するAIシステム ● インシリコ毒性メカニズム解析システム ● 生体動物画像診断(CT、MRIなど)を使用した毒性標的臓器の予測 ● 眼毒性評価およびメカニズム解析のためのin vitroモデル ● 内耳有毛細胞の損傷と再生を評価するためのin vitro評価システム ● ABR(聴性脳幹反応)を使用した耳毒性のin vivo評価システム ● 核酸アナログ創出におけるAmes試験回避策および予測ツール
創薬基盤技術	代謝物合成酵素の基質特異性に基づいた酵素活性のスクリーニングおよび最適化手法酵素の配列データを含むバイオインフォマティクス技術再現性のあるスケールアップ培養のためのデータ駆動型最適化